Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 233, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880702

RESUMO

BACKGROUND: The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS: We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS: These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.


Assuntos
Basidiomycota , Alelos , Canadá , Basidiomycota/genética , Recombinação Genética , Europa (Continente) , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Methods Mol Biol ; 2658: 145-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37024700

RESUMO

Candida albicans is a prevalent fungal pathogen of humans that can cause both superficial and life-threatening disease, primarily in immunocompromised populations. Currently, antifungal drug classes available to treat fungal infections remain limited and the emergence of drug-resistant strains threatens antifungal efficacy, necessitating the discovery and development of additional therapeutics. The construction of the C. albicans double-barcoded heterozygous deletion collection (DBC) enables the rapid and systematic assessment of haploinsufficiency phenotypes in a pooled format. Specifically, this functional genomics resource can be used to identify heterozygous deletion mutants that are hypersensitive to compounds in order to define putative cellular targets and/or other modifiers of compound activity. Here, we describe protocols to characterize the mode of action of small molecules using the C. albicans DBC, including how to prepare compound-treated cultures, isolate genomic DNA, amplify strain-specific barcodes, and prepare DNA libraries for high-throughput sequencing. This technique provides a powerful approach to elucidate the compound mechanism of action in order to bolster the antifungal pipeline.


Assuntos
Candida albicans , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Genômica , Fenótipo , Testes de Sensibilidade Microbiana
3.
Methods Mol Biol ; 2517: 111-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674949

RESUMO

The recent global emergence of the fungal pathogen Candida auris has caused significant concern given that this pathogen often exhibits resistance to multiple antifungal drug classes. In order to effectively combat C. auris infections, there is a dire need to expand our current antifungal arsenal. Essential proteins often serve as targets for antimicrobial compounds, and thus being able to study essential genes in a pathogen of interest is a critical first step in drug development. To identify and characterize essential genes in microorganisms, researchers must be able to manipulate microbial genomes using a variety of molecular biology techniques. Given the haploid genome of C. auris, genetic alterations have largely been achieved by gene deletion through homologous recombination using a drug resistance marker. However, this approach is not feasible to study essential gene function. Here, we describe a method for the study of essential genes using a tetracycline-repressible promoter replacement system, which can be used to genetically repress essential genes in C. auris and, thus, study their function. This method provides a powerful approach to assess and characterize essential gene function in an emerging fungal pathogen.


Assuntos
Candida auris , Genes Essenciais , Antifúngicos/farmacologia , Candida auris/genética , Regulação para Baixo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
4.
ACS Chem Biol ; 17(6): 1343-1350, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584803

RESUMO

With resistance to current agricultural fungicides rising, a great need has emerged for new antifungals with unexploited targets. In response, we report a novel series of diazaborines with potent activity against representative fungal plant pathogens. To identify their mode of action, we selected for resistant isolates using the model fungus Saccharomyces cerevisiae. Whole-genome sequencing of independent diazaborine-resistant lineages identified a recurring mutation in ERG25, which encodes a C-4 methyl sterol oxidase required for ergosterol biosynthesis in fungi. Haploinsufficiency and allele-swap experiments provided additional genetic evidence for Erg25 as the most biologically relevant target of our diazaborines. Confirming Erg25 as putative target, sterol profiling of compound-treated yeast revealed marked accumulation of the Erg25 substrate, 4,4-dimethylzymosterol and depletion of both its immediate product, zymosterol, as well as ergosterol. Encouraged by these mechanistic insights, the potential utility of targeting Erg25 with a diazaborine was demonstrated in soybean-rust and grape-rot models of fungal plant disease.


Assuntos
Ergosterol , Oxigenases de Função Mista , Antifúngicos/farmacologia , Oxigenases de Função Mista/genética , Saccharomyces cerevisiae/genética , Esteróis
5.
Bioorg Med Chem Lett ; 43: 128089, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964438

RESUMO

Several boron-containing small molecules have been approved by the US FDA to treat human diseases. We explored potential applications of boron-containing compounds in modern agriculture by pursuing multiple research and development programs. Here, we report a novel series of multi-substitution benzoxaboroles (1-36), a compound class that we recently reported as targeting geranylgeranyl transferase I (GGTase I) and thereby inhibiting protein prenylation (Kim et al., 2020). These compounds were designed, synthesized, and tested against the agriculturally important fungal pathogens Mycosphaerella fijiensis and Colletotrichum sublineolum in a structure-activity relationship (SAR) study. Compounds 13, 28, 30, 34 and 36 were identified as active leads with excellent antifungal MIC95 values in the range of 1.56-3.13 ppm against M. fijiensis and 0.78-3.13 ppm against C. sublineolum.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Compostos de Boro/farmacologia , Colletotrichum/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Agricultura , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Antifúngicos/síntese química , Antifúngicos/química , Ascomicetos/metabolismo , Compostos de Boro/síntese química , Compostos de Boro/química , Colletotrichum/metabolismo , Relação Dose-Resposta a Droga , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
6.
Nat Commun ; 11(1): 6429, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353950

RESUMO

Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.


Assuntos
Azóis/farmacologia , Candida/patogenicidade , Oxindóis/farmacologia , Animais , Antifúngicos/análise , Antifúngicos/química , Antifúngicos/farmacologia , Azóis/análise , Azóis/química , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Deleção de Genes , Humanos , Camundongos , Oxindóis/química , Virulência/efeitos dos fármacos
7.
ACS Chem Biol ; 15(7): 1930-1941, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32573189

RESUMO

Fungal pathogens pose an increasing threat to global food security through devastating effects on staple crops and contamination of food supplies with carcinogenic toxins. Widespread deployment of agricultural fungicides has increased crop yields but is driving increasingly frequent resistance to available agents and creating environmental reservoirs of drug-resistant fungi that can also infect susceptible human populations. To uncover non-cross-resistant modes of antifungal action, we leveraged the unique chemical properties of boron chemistry to synthesize novel 6-thiocarbamate benzoxaboroles with broad spectrum activity against diverse fungal plant pathogens. Through whole genome sequencing of Saccharomyces cerevisiae isolates selected for stable resistance to these compounds, we identified mutations in the protein prenylation-related genes, CDC43 and ERG20. Allele-swapping experiments confirmed that point mutations in CDC43, which encodes an essential catalytic subunit within geranylgeranyl transferase I (GGTase I) complex, were sufficient to confer resistance to the benzoxaboroles. Mutations in ERG20, which encodes an upstream farnesyl pyrophosphate synthase in the geranylgeranylation pathway, also conferred resistance. Consistent with impairment of protein prenylation, the compounds disrupted membrane localization of the classical geranylgeranylation substrate Cdc42. Guided by molecular docking predictions, which favored Cdc43 as the most likely direct target, we overexpressed and purified functional GGTase I complex to demonstrate direct binding of benzoxaboroles to it and concentration-dependent inhibition of its transferase activity. Further development of the boron-containing scaffold described here offers a promising path to the development of GGTase I inhibitors as a mechanistically distinct broad spectrum fungicide class with reduced potential for cross-resistance to antifungals in current use.


Assuntos
Antifúngicos/farmacologia , Compostos de Boro/farmacologia , Prenilação de Proteína/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiocarbamatos/farmacologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Antifúngicos/síntese química , Antifúngicos/metabolismo , Compostos de Boro/síntese química , Compostos de Boro/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Farmacorresistência Fúngica/genética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Fungos/efeitos dos fármacos , Fungos/genética , Simulação de Acoplamento Molecular , Mutação Puntual , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Tiocarbamatos/síntese química , Tiocarbamatos/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
9.
mBio ; 10(1)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696744

RESUMO

Candida auris is an emerging fungal pathogen and a serious global health threat as the majority of clinical isolates display elevated resistance to currently available antifungal drugs. Despite the increased prevalence of C. auris infections, the mechanisms governing drug resistance remain largely elusive. In diverse fungi, the evolution of drug resistance is enabled by the essential molecular chaperone Hsp90, which stabilizes key regulators of cellular responses to drug-induced stress. Hsp90 also orchestrates temperature-dependent morphogenesis in Candida albicans, a key virulence trait. However, the role of Hsp90 in the pathobiology of C. auris remains unknown. In order to study regulatory functions of Hsp90 in C. auris, we placed HSP90 under the control of a doxycycline-repressible promoter to enable transcriptional repression. We found that Hsp90 is essential for growth in C. auris and that it enables tolerance of clinical isolates with respect to the azoles, which inhibit biosynthesis of the membrane sterol ergosterol. High-level azole resistance was independent of Hsp90 but dependent on the ABC transporter CDR1, deletion of which resulted in abrogated resistance. Strikingly, we discovered that C. auris undergoes a morphogenetic transition from yeast to filamentous growth in response to HSP90 depletion or cell cycle arrest but not in response to other cues that induce C. albicans filamentation. Finally, we observed that this developmental transition is associated with global transcriptional changes, including the induction of cell wall-related genes. Overall, this report provides a novel insight into mechanisms of drug tolerance and resistance in C. auris and describes a developmental transition in response to perturbation of a core regulator of protein homeostasis.IMPORTANCE Fungal pathogens pose a serious threat to public health. Candida auris is an emerging fungal pathogen that is often resistant to commonly used antifungal drugs. However, the mechanisms governing drug resistance and virulence in this organism remain largely unexplored. In this study, we adapted a conditional expression system to modulate the transcription of an essential gene, HSP90, which regulates antifungal resistance and virulence in diverse fungal pathogens. We showed that Hsp90 is essential for growth in C. auris and is important for tolerance of the clinically important azole antifungals, which block ergosterol biosynthesis. Further, we established that the Cdr1 efflux transporter regulates azole resistance. Finally, we discovered that C. auris transitions from yeast to filamentous growth in response to Hsp90 inhibition, accompanied by global transcriptional remodeling. Overall, this work provides a novel insight into mechanisms regulating azole resistance in C. auris and uncovers a distinct developmental program regulated by Hsp90.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Farmacorresistência Fúngica , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Candida/genética , Tolerância a Medicamentos , Deleção de Genes , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/genética , Proteínas de Membrana Transportadoras/genética
10.
PLoS Genet ; 15(1): e1007901, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615616

RESUMO

Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Candida albicans/patogenicidade , Fungos/genética , Fungos/patogenicidade , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/patogenicidade , Morfogênese/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
11.
PLoS Genet ; 14(3): e1007270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590106

RESUMO

The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Genes Fúngicos , Proteínas de Choque Térmico HSP90/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Western Blotting , Candida albicans/genética , Imunoprecipitação da Cromatina , Fatores de Transcrição de Choque Térmico/genética , Morfogênese , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Temperatura , Virulência
12.
PLoS Genet ; 12(10): e1006405, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27788136

RESUMO

The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened a collection of 1,248 C. albicans homozygous transposon insertion mutants to identify those that were filamentous in the absence of inducing cues. We identified the Rho1 GAP Lrg1, which represses filamentous growth by stimulating Rho1 GTPase activity and converting Rho1 to its inactive, GDP-bound form. Deletion of LRG1 or introduction of a RHO1 mutation that locks Rho1 in constitutively active, GTP-bound state, leads to filamentation in the absence of inducing cues. Deletion of the Rho1 downstream effector PKC1 results in defective filamentation in response to diverse host-relevant inducing cues, including serum. We further established that Pkc1 is not required to sense filament-inducing cues, but its kinase activity is critical for the initiation of filamentous growth. Our genetic analyses revealed that Pkc1 regulates filamentation independent of the canonical MAP kinase cascade. Further, although Ras1 activation is not impaired in a pkc1Δ/pkc1Δ mutant, adenylyl cyclase activity is reduced, consistent with a model in which Pkc1 functions in parallel with Ras1 in regulating Cyr1 activation. Thus, our findings delineate a signaling pathway comprised of Lrg1, Rho1 and Pkc1 with a core role in C. albicans morphogenesis, and illuminate functional relationships that govern activation of a central transducer of signals that control environmental response and virulence programs.


Assuntos
Glicoproteínas/genética , Morfogênese/genética , Proteína Quinase C/genética , Proteínas rho de Ligação ao GTP/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Citoesqueleto/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Glicoproteínas/biossíntese , Humanos , Proteínas Mitocondriais/genética , Proteína Quinase C/biossíntese , Transdução de Sinais/genética , Proteínas ras/genética , Proteínas rho de Ligação ao GTP/biossíntese
13.
PLoS Pathog ; 11(11): e1005308, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588216

RESUMO

The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients, providing a poignant example of parallel evolution. Together, this combined clinical-genomic approach provides a high-resolution portrait of the fungal microbiome of cystic fibrosis patient lungs and identifies a genetic basis of pathogen adaptation.


Assuntos
Fibrose Cística/genética , Fungos/genética , Microbiota , Neuregulina-1/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Escarro/microbiologia , Adaptação Biológica , Farmacorresistência Fúngica/genética , Humanos , Microbiota/fisiologia , Mutação/genética , Neuregulina-1/genética , Pseudomonas aeruginosa/genética
14.
Plant J ; 72(6): 960-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061883

RESUMO

Ribonuclease R (RNR1) and polynucleotide phosphorylase (cpPNPase) are the two known 3'→5' exoribonucleases in Arabidopsis chloroplasts, and are involved in several aspects of rRNA and mRNA metabolism. In this work, we show that mutants lacking both RNR1 and cpPNPase exhibit embryo lethality, akin to the non-viability of the analogous double mutant in Escherichia coli. We were successful, however, in combining an rnr1 null mutation with weak pnp mutant alleles, and show that the resulting chlorotic plants display a global reduction in RNA abundance. Such a counterintuitive outcome following the loss of RNA degradation activity suggests a major importance of RNA maturation as a determinant of RNA stability. Detailed analysis of the double mutant demonstrates that the enzymes catalyze a two-step maturation of mRNA 3' ends, with RNR1 polishing 3' termini created by cpPNPase. The bulky quaternary structure of cpPNPase compared with RNR1 could explain this activity split between the two enzymes. In contrast to the double mutants, the rnr1 single mutant overaccumulates most mRNA species when compared with the wild type. The excess mRNAs in rnr1 are often present in non-polysomal fractions, and half-life measurements demonstrate a substantial increase in the stability of most mRNA species tested. Together, our data reveal the cooperative activity of two 3'→5' exoribonucleases in chloroplast mRNA 3' end maturation, and support the hypothesis that RNR1 plays a significant role in the destabilization of mRNAs unprotected by ribosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Exorribonucleases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estabilidade de RNA/genética , Ribonucleotídeo Redutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Exorribonucleases/genética , Meia-Vida , Homeostase , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA de Cloroplastos/genética , RNA Mensageiro/genética , RNA Ribossômico/metabolismo , Ribonucleotídeo Redutases/genética
15.
Plant J ; 67(3): 381-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21466602

RESUMO

Polynucleotide phosphorylase (PNPase) catalyzes RNA polymerization and 3'→5' phosphorolysis in vitro, but its roles in plant organelles are poorly understood. Here, we have used in vivo and in vitro mutagenesis to study Arabidopsis chloroplast PNPase (cpPNPase). In mutants lacking cpPNPase activity, unusual RNA patterns were broadly observed, implicating cpPNPase in rRNA and mRNA 3'-end maturation, and RNA degradation. Intron-containing fragments also accumulated in mutants, and cpPNPase appears to be required for a degradation step following endonucleolytic cleavage of the excised lariat. Analysis of poly(A) tails, which destabilize chloroplast RNAs, indicated that PNPase and a poly(A) polymerase share the polymerization role in wild-type plants. We also studied two lines carrying mutations in the first PNPase core domain, which does not harbor the catalytic site. These mutants had gene-dependent and intermediate RNA phenotypes, suggesting that reduced enzyme activity differentially affects chloroplast transcripts. The interpretations of in vivo results were confirmed by in vitro analysis of recombinant enzymes, and showed that the first core domain affects overall catalytic activity. In summary, cpPNPase has a major role in maturing mRNA and rRNA 3'-ends, but also participates in RNA degradation through exonucleolytic digestion and polyadenylation. These functions depend absolutely on the catalytic site within the second duplicated RNase PH domain, and appear to be modulated by the first RNase PH domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Exorribonucleases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA de Cloroplastos/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cloroplastos/genética , Íntrons , Família Multigênica , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fenótipo , Mutação Puntual , Poli A/genética , Poli A/metabolismo , Poliadenilação , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA de Cloroplastos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...